Homework #2

1. Suppose identical solid spheres are distributed through space in such a way that their centers are lie on the points of a lattice, and spheres on neighboring points just touch without overlapping. (Such an arrangement of spheres is called a close-packing arrangement.) Assuming that the spheres have unit density, show that the density of a set of close-packed spheres on each of the four structures (the "packing fraction") is:

- **fcc:** \(\frac{\sqrt{2}\pi}{6} = 0.74 \)
- **bcc:** \(\frac{\sqrt{3}\pi}{8} = 0.68 \)
- **sc:** \(\frac{\pi}{6} = 0.52 \)
- **diamond:** \(\frac{\sqrt{3}\pi}{16} = 0.34 \)

Solution:

For fcc structure, the nearest neighbor distance is \(a/\sqrt{2} \), thus \(R = a/(2\sqrt{2}) \). Here \(a \) is the lattice constant of the fcc lattice and \(R \) is the radius of the sphere. Since there are four lattice sites per fcc cubic cell, the density should be

\[
\left(4 \times \frac{4\pi R^3}{3}\right)/a^3 = \frac{16\pi}{3} \left(\frac{1}{2\sqrt{2}}\right)^3 = \frac{\pi}{\sqrt{2}} = \frac{\sqrt{2}\pi}{6} = 0.74 .
\]

For bcc structure, the nearest neighbor distance is \(\sqrt{3}a/2 \), thus \(R = \sqrt{3}a/4 \). Here \(a \) is the lattice constant of the bcc lattice and \(R \) is the radius of the sphere. Since there are two lattice sites per bcc cubic cell, the density should be

\[
\left(2 \times \frac{4\pi R^3}{3}\right)/a^3 = \frac{8\pi}{3} \left(\frac{\sqrt{3}}{4}\right)^3 = \frac{\sqrt{3}\pi}{8} = 0.68 .
\]

For sc structure, the nearest neighbor distance is \(a \), thus \(R = a/2 \). Here \(a \) is the lattice constant of the sc lattice and \(R \) is the radius of the sphere. Since there are one lattice sites per sc cubic cell, the density should be

\[
\left(1 \times \frac{4\pi R^3}{3}\right)/a^3 = \frac{4\pi}{3} \left(\frac{1}{2}\right)^3 = \frac{\pi}{6} = 0.52 .
\]

The diamond structure is two sets of fcc lattices shifted along the diagonal direction by a quarter of the diagonal distance. The nearest neighbor distance is \(\sqrt{3}a/4 \), thus \(R = \sqrt{3}a/8 \). Here \(a \) is the lattice constant of the fcc lattice and \(R \) is the radius of the sphere. Since there are 4+4=8 lattice sites within the fcc cubic cell for diamond structure, the density should be

\[
\left(8 \times \frac{4\pi R^3}{3}\right)/a^3 = \frac{32\pi}{3} \left(\frac{\sqrt{3}}{8}\right)^3 = \frac{\sqrt{3}\pi}{16} = 0.34 .
\]
2. (a) Prove that the ideal \(c/a \) ratio for the hexagonal close-packed structure is \(\sqrt{8/3} = 1.633 \).

(b) Sodium transforms from bcc to hcp at about 23K (the "martensitic" transformation). Assuming that the density remains fixed through this transition, find the lattice constant \(a \) of the hexagonal phase, given that \(a=4.23\text{Å} \) in the cubic phase and that \(c/a \) ratio is ideal in the hcp phase.

Solution:

(a) Let \(a_{\text{hcp}} \) be the hcp lattice constant, i.e., the edge length of the hexagon. Then

\[
\frac{c}{2} = \sqrt{\frac{2}{3}} a_{\text{hcp}} \cdot \frac{\sqrt{3} a_{\text{hcp}}}{2} = \frac{2}{3} a_{\text{hcp}} \cdot \sqrt{\frac{2}{3} a_{\text{hcp}}}.
\]

Thus

\[
\frac{c}{2} \cdot \frac{\sqrt{3} a_{\text{hcp}}}{2} = \frac{2}{3} a_{\text{hcp}} \cdot \sqrt{\frac{2}{3} a_{\text{hcp}}}
\]

(b) The volume of a hcp cell is \(\frac{3\sqrt{3}}{2} a_{\text{hcp}}^2 c = 3\sqrt{2} a_{\text{hcp}}^3 \). There are 6 atoms with each hcp cell. Thus the density is \(\rho = \frac{6w}{3\sqrt{2} a_{\text{hcp}}^3} = \frac{\sqrt{2} w}{a_{\text{hcp}}^3} \). Here \(w \) is the weight one sodium atom. For bcc sodium, there are 2 atoms within each bcc cubic cell. The density should be \(\rho = \frac{2w}{a_{\text{bcc}}} \). If the density doesn’t change during the hcp-bcc transition, there is \(\frac{\sqrt{2} w}{a_{\text{hcp}}^3} = \frac{2w}{a_{\text{bcc}}^3} \). Thus \(a_{\text{hcp}} = \frac{a_{\text{bcc}}}{\sqrt[3]{2}} = \frac{4.23\text{Å}}{1.122} = 3.77\text{Å} \).

3. Under what conditions, will the body centered tetragonal lattice become
(a) a bcc structure?
(b) an fcc structure?

Solution:
4. Figure out the indexes of the following lattice planes. (The arrows are the basic vectors of the lattice.)

Solution:
(a). \(\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{3} \right) \) = (6, 3, 4)
(b). \(\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{4} \right) \) = (2, 4, 1)
(c). \(\left(\frac{1}{3}, \frac{1}{3}, \infty \right) \) = (1, 1, 0)

5. Make a drawing of the (110) plane of a bcc lattice. What's the distance between adjacent (110) planes if the lattice constant is \(a \)?

Solution:
The shaded is a (110) plane. The next (110) plane contains the site with red color. Thus the distance between the adjacent (110) plane (red line) is \(\frac{a}{\sqrt{2}} \).

6. Make a drawing of the (111) plane of an fcc lattice. What's the distance between adjacent (111) planes if the lattice constant is \(a \)?

Solution:

The shaded are two adjacent (111) planes. Their separation distance equals 1/3 of the diagonal distance, i.e., equals to \(\sqrt{3}a/3 \).