Homework Assignment #6

1. **Continuum wave equation.** Show that for long wavelengths the equation of motion,

\[M \frac{d^2u}{dt^2} = C(u_{s+1} + u_{s-1} - 2u_s), \]

reduces to the continuum elastic wave equation

\[\frac{\partial^2 u}{\partial t^2} = v^2 \frac{\partial^2 u}{\partial x^2} \]

where \(v \) is the velocity of sound.

2. **Diatomic chain.** Consider the normal modes of a linear chain in which the force constants between nearest-neighbor atoms are alternately \(C \) and \(10C \). Let the masses be equal, and let the nearest-neighbor separation be \(a/2 \). Find \(\omega(K) \) at \(K = 0 \) and \(K = \pi/a \). Sketch in the dispersion relation by eye. This problem simulates a crystal of diatomic molecules such as \(\text{H}_2 \).

3. **Atomic vibrations in a metal.** Consider point ions of mass \(M \) and charge \(e \) immersed in a uniform sea of conduction electrons. The ions are imagined to be in stable equilibrium when at regular lattice points. If one ion is displaced a small distance \(r \) from its equilibrium position, the restoring force is largely due to the electric charge within the sphere of radius \(r \) centered at the equilibrium position. Take the number density of ions (or of conduction electrons) as \(\frac{4}{3\pi R^3} \), which defines \(R \).

 (a) Show that the frequency of a single ion set into oscillation is \(\omega = \sqrt{\frac{e^2}{MR^3}} \).

 (b) Estimate the value of this frequency for sodium, roughly.

 (c) From (a), (b), and some common sense, estimate the order of magnitude of the velocity of sound in metal.

4. **Soft phonon modes.** Consider a line of ions of equal mass but alternating in charge, with \(e_p = e(-1)^p \) as the charge on the \(p \)th ion. The interatomic potential is the sum of two contributions: (1) a short-range interaction of force constant \(C_{iR} = \gamma \) that acts between nearest-neighbors only, and (2) a coulomb interaction between all ions.

 (a) Show that the contribution of the coulomb interaction to the atomic force constants is \(C_{pC} = 2(-1)^p \frac{e^2}{p^3 a^3} \), where \(a \) is the equilibrium nearest-neighbor distance.

 (b) From \(\omega^2 = \frac{2}{M} \sum_{p>0} C_p (1 - \cos pKa) \), here \(C \) includes both nearest neighbor and other neighbors, show that the dispersion relation may be written as

\[\omega^2 / \omega_0^2 = \sin^2 \left(\frac{1}{2} Ka \right) + \sigma \sum_{p=1}^{\infty} (-1)^p (1 - \cos pKa) p^{-3}, \]

where \(\omega_0^2 \equiv 4\gamma / M \) and \(\sigma = e^2 / \gamma a^3 \).

 (c) Show that \(\omega^2 \) is negative (unstable mode) at the zone boundary \(Ka = \pi \) if \(\sigma > 0.475 \) or \(4/7\zeta(3) \), where \(\zeta \) is a Riemann zeta function.

 Show further that the speed of sound at small \(Ka \) is imaginary if \(\sigma > 2(\ln 2)^{-1} = 0.721 \). Thus \(\omega^2 \) goes to zero and the lattice is unstable for some value of \(Ka \) in the interval \((0, \pi)\) if \(0.475 < \sigma < 0.721 \). Notice that the phonon spectrum is not that of a diatomic lattice because the interaction of any ion with its neighbors is the same as that of any other ion.
5. For a 1D lattice, if \(k_1 - k_2 = \frac{2\pi m}{a} \),

(a) Show that \(k_1 \) and \(k_2 \) describe the same elastic wave.

(b) For a special case of \(k_1 = \frac{\pi}{3a} \) and \(k_2 = \frac{7\pi}{3a} \), make a plot of \(\cos(k_1 x) \) and \(\cos(k_2 x) \) versus \(x/a \). Confirm the conclusion of (a) from the plot.