1. Magnetic field penetration in a plate. The penetration equation may be written as \\
\[\lambda^2 \nabla^2 B = B, \] where \(\lambda \) is the penetration depth.

(a) Show that \(B(x) \) inside a superconducting plate perpendicular to the x axis and of thickness \(\delta \) is given by

\[B(x) = B_a \frac{\cosh(x / \lambda)}{\cosh(\delta / 2\lambda)}, \]

where \(B_a \) is the field outside the plate and parallel to it; here \(x=0 \) is at the center of the plate.

(b) The effective magnetization \(M(x) \) in the plate is defined by \(B(x) - B_a = 4\pi M(x) \).

Show that in CGS, \(4\pi M(x) = -B_a \frac{\delta^2 - 4x^2}{8\lambda^2} \), for \(\delta \ll \lambda \).

2. Critical field of thin films.

(a) Use the result of problem 1(b), show that the free energy density at \(T=0 \)K within a superconducting film of thickness \(\delta \) in an external magnetic field \(B_a \) is given by, for \(\delta \ll \lambda \),

\[F_s(x, B_a) = U_s(0) + \frac{(\delta^2 - 4x^2)B_a^2}{64\pi\lambda^2}. \]

(b) Show that the magnetic contribution to \(F_s \) when averaged over the thickness of the thin film is \(<F_s> = U_s(0) + \frac{(\delta / \lambda)^2 B_a^2}{96\pi} \).

(c) Show that the critical field of the thin film is proportional to \((\lambda / \delta)H_c \), where \(H_c \) is the bulk critical field.

3. Two fluid model of a superconductor. On the two-fluid model of a superconductor we assume that at temperatures \(0<T<T_c \) the current density may be written as the sum of the contributions of normal and superconducting electrons: \(\vec{j} = \vec{j}_N + \vec{j}_S \), where
\[\vec{j}_N = \sigma_0 \vec{E} \] and \(\vec{j}_S \) is given by the London equation of \(\vec{j}_S = -\frac{c}{4\pi\lambda_L^2} \vec{A} \). Here \(\sigma_0 \) is an ordinary normal conductivity, decreased by the reduction in the number of normal electrons at temperature \(T \) as compared to the normal state. Neglect inertial effects on both \(\vec{j}_N \) and \(\vec{j}_S \).

(a) Show from the Maxwell equations that the dispersion relation connecting wavevector \(k \) and frequency \(\omega \) for electromagnetic waves in the superconductor is

\[k^2 c^2 = i4\pi\sigma_0 \omega - c^2 \lambda_L^2 + \omega^2 \]

(b) If \(\tau \) is the relaxation time of the normal electrons and \(n_N \) is their concentration, show by use the expression \(\sigma_0 = n_N e^2 \tau / m \) that at frequencies \(\omega << 1/\tau \) the dispersion relation does not involve the normal electrons in an important way, so that the motion of the electrons is described by the London equation alone.

4. **London penetration depth.** (a) Take the time derivative of the London equation \(\vec{j} = -\frac{c}{4\pi\lambda_L^2} \vec{A} \) to show that \(\frac{\partial \vec{j}}{\partial t} = \frac{c^2}{4\pi\lambda_L^2} \vec{\dot{E}} \). (b) If \(m \frac{d\vec{v}}{dt} = q\vec{E} \) as for free carriers of charge \(q \) and mass \(m \), show that \(\lambda_L^2 = mc^2 / 4\pi q^2 \).

5. **Diffraction effect of Josephson junction.** Consider a junction of rectangular cross section with a magnetic field \(B \) applied in the plane of the junction, normal to an edge of with \(w \). Let the thickness of the junction be \(T \). Assume for convenience that the phase difference of the two superconductor is \(\pi/2 \) when \(B=0 \). Show that the dc current in the presence of the magnetic field is

\[J = J_0 \frac{\sin(wTB/e\hbar)}{wTB/e\hbar} . \]