Random Walk Models for Life in Motion

Diffusion in the Cell

Dynamics in cells is mostly driven by random jiggling of small molecules in solution: diffusion.

Because diffusion of molecules is powered by thermal energy, movement is random.

- Collisions in chemical reactions
- Ligand binding/unbinding
- Distribution of ions or newly made proteins
- Homogeneous distribution of abundant molecules
- Equilibrium of pressure and equipartition of energy
Brownian Motion

Diffusion can be modeled as one-, two- or three-dimensional random walk:

• Step size is fixed
• **Number of steps is not fixed and time dependent**
• Assume that the molecule takes one step at every Δt.

\[t = N \cdot \Delta t \]

• From one-dimensional random walk:

\[t = N \cdot \Delta t \]

\[< x^2 > = N L^2 \text{ where } L \text{ is the step size} \]

\[< x^2 > = \frac{t}{\Delta t} L^2 \text{ linearly increases with time} \]
The diffusion constant $D = \frac{L^2}{2\Delta t}$ and therefore in one dimension $< x^2 > = 2Dt$.

In two dimensions: $< r_N^2 > = < x_N^2 > + < y_N^2 >$

$< r^2 > = 2NL^2 = 4Dt$

In three dimensions: $< r^2 > = 3NL^2 = 6Dt$.

D is an experimentally measurable parameter.
Friction of Water

From Physics 7A, we learned that freely falling object in air will reach a terminal velocity, due to the drag force of air molecules.

• In solution, collisions between small molecules give rise to drag forces.
• Consider the particle is being pulled in +x direction with force of F.
• Suppose collisions occur at every \(\Delta t \) seconds.
• Between collisions,

\[
\frac{dv_x}{dt} = \frac{F}{m}
\]

\[
\Delta x = v_{0,x} t + \frac{1}{2m} (\Delta t)^2
\]

• Suppose that each collision obliterates the memory of the previous step.

\[
<v_{0,x} > = 0
\]

\[
<v_{\Delta x} > = \frac{1}{2m} (\Delta t)^2
\]

\[
\frac{v_{\Delta x}}{\Delta t} = v_{drift} = \frac{1}{2m} \Delta t
\]
Viscous Drag: Stokes Formula

\[F = \zeta v_{\text{drift}} \text{ where viscous drag coefficient } \zeta = \frac{2m}{\Delta t} \]

\[\zeta = 6\pi\eta R \]

\(\zeta \) is an experimentally measurable parameter. Determines how fast a particle settles in viscous drag of water. \(\Delta t \) depends on the size of the particle and viscosity of the liquid.

Viscosity of water is roughly 10^{-3} Pa.s at room temperature. Viscosity of cytoplasm depends on particle size:

a) for molecules smaller than 1 nm, it is less than that of water.
b) for particles of diameter 6, it is 3 times higher than that of water.
c) 50-500 nm particles, it is 30-300 times that of water.
Einstein Relation

We assumed molecular scale parameters L and Δt, which are not experimentally measurable.

To verify the idea that diffusion and friction are manifestations of thermal motion, Einstein noticed that there is a third relation between L and Δt.

$$\left(\frac{L}{\Delta t} \right)^2 = v_{0,x}^2$$

From equipartition theorem, $< v_{0,x}^2 >/ = \frac{kT}{m}$

(we use only one component of velocity)

$$\left(\frac{L}{\Delta t} \right)^2 = \frac{kT}{m}$$

$$D = \frac{L^2}{2\Delta t} \text{ and } \zeta = \frac{2m}{\Delta t}$$

$$D\zeta = kT \text{ Einstein Relation}$$
Einstein Relation

\[D\varsigma = kT \quad \text{Einstein Relation} \]

- The equation does not depend on mass \(m \).
- Small particles will feel less drag (small \(\varsigma \)) and will diffuse more readily (big \(D \)).
- For a small gas molecule in water, \(D \) is roughly 2000 µm²s⁻¹
- For a typical globular protein (\(R = 3 \) nm) in cytoplasm, \(D \) is roughly 7 µm²s⁻¹
- Both friction (\(\varsigma \)) and diffusion (\(D \)) depend on \(T \) in a complicated way, but their product depend on \(T \) in a simple way.
Diffusion Rules the Subcellular World

How long does it take to move across the bacterial cell?

\[< r^2 > = 6Dt \quad \text{and} \quad r = 1 \, \mu m \quad (\text{assuming bacteria as a sphere}) \]

\[D = 100 \, \mu m^2 \, s^{-1} \]

\[t = 2 \, ms \]

Diffusion time increases by the square of the distance.

Graph showing the relationship between time and length.
Limitations in Vesicle Transport

\[D = \frac{kT}{6\pi\eta R} \]

for an organelle 500 nm in radius, \(D \approx 0.5 \, \mu m^2 s^{-1} \)

travelling across a nerve cell 1 m in length in 1D,

\[\frac{\langle r^2 \rangle}{2D} = t = 12 \, \text{days} \]

In reality, it takes much longer than 12 days, because viscosity of cytoplasm is much higher for large particles and the crowding effect slows down diffusion.
Fick's Law

• Suppose that initial distribution of particles is uniform in \(y \) and \(z \) directions, but not in \(x \).
• At every step \(\Delta t \), each particle moves a distance \(L \), either towards right or left.
• \(N(x) \) is the number of particles at position \(x \) (and area \(A \) of the box).
• The net number of particles crossing from left to right:

\[
\frac{1}{2} \left(N(x) - N(x + L) \right)
\]

when \(L \to 0 \),

\[
\frac{1}{2} \left(N(x) - N(x + L) \right) = -\frac{1}{2} \left(L \frac{dN}{dx} \right)
\]

concentration of molecules \(c = \frac{N}{V_{\text{box}}} = \frac{N}{A \cdot L} \)
Average rate of crossing a surface per unit area is flux.

\[
j = \frac{1}{A \Delta t} \left(-\frac{L}{2} \frac{dN}{dx} \right) = \frac{1}{A \Delta t} \left(-\frac{L}{2} \frac{dN}{dx} \right)
\]

\[
j = \frac{-L}{2A \Delta t} \left(\frac{d}{dx} c(x) A L \right)
\]

\[
j = \frac{-L^2 A}{2A \Delta t} \frac{dc}{dx}
\]

\[
j = \frac{-L^2}{2 \Delta t} \frac{dc}{dx}
\]

\[
j = -D \frac{dc}{dx} \quad (Fick's Law)
\]

- \(j\) measures the number of particles moving from left to right (+\(x\) direction)
- If there are more particles on the left, \(c\) is decreasing by \(x\), and its negative derivative is positive. There will be net flux of particles towards right.
- Particles will move from densely populated regions to sparsely populated regions to equilibrate their chemical potential (Entropic Forces)
Diffusion Equation

- If there is order in the initial state, diffusion will erase that memory.
- Fick’s Law is useful if concentration gradient is time independent.
- However if the concentration gradient is changing over time due to diffusion of particles, Fick’s Law does not tell much. $N(x,t)$

\[
\frac{d}{dt} N(x, t) = A[j(x) - j(x + L)]
\]

if $L \to 0$, \[\frac{dN}{dt} = A \left(-L \frac{dj}{dx}\right) \]

\[
\frac{\partial c}{\partial t} = -\frac{dj}{dx} \quad \text{Continuity Equation}
\]

since $j = -D \frac{dc}{dx}$

\[
\frac{\partial c}{\partial t} = D \frac{d^2 c}{dx^2} \quad \text{(Diffusion Equation)}
\]
Diffusion Equation

\[j = -D \frac{dc}{dx} \]
\[\frac{\partial c}{\partial t} = D \frac{d^2 c}{dx^2} \]

- Given the initial concentration profile \(c(x,0) \), we can predict the future profile \(c(x,t) \).

- Well mixed uniform solution does not change by time.

\[\frac{dc}{dx} = 0 = j \quad \frac{d^2 c}{dx^2} = 0 = \frac{\partial c}{\partial t} \]

- Concentration gradient has net flux, but the gradient does not change by time.

- Every second, the number of particles entering the region is equal to the ones leaving.

\[\frac{dc}{dx} < 0 \quad \frac{d^2 c}{dx^2} = 0 = \frac{\partial c}{\partial t} \]
Fundamental Pulse Equation

• What happens if we introduce N number of particles to $x = 0$ position in pure water.

$$\frac{dc}{dx} = 0 \text{ at } x = 0$$

$$\frac{dc}{dx} < 0 \text{ at } x > 0$$

Net flux of particles on the left towards the left side

$$\frac{dc}{dx} > 0 \text{ at } x < 0$$

Net flux of particles on the right towards the right side

$$\frac{d^2c}{dx^2} < 0, \text{ so } \frac{\partial c}{\partial t} < 0$$

Concentration of particles decreases by time due to diffusion of particles away from 0 position.

• Diffusion finally erases the bump.
Fundamental Pulse Solution

- We expect the variance of the pulse to increase with time.
- Can simple Gaussian be a solution:

\[c(x, t) = B e^{-x^2/2At} \quad \text{where } \sigma^2 = At \quad \text{and} \quad (A, B \text{ are constants}) \]

No, because the number of particles are fixed

\[N = \int_{-\infty}^{\infty} dx c(x, t) \]

Amplitude of Gaussian decreases with time.

Indeed, the amplitude of Gaussian is a function of \(\sigma \)

\[c(x, t) = \frac{1}{\sigma \sqrt{2\pi}} e^{-x^2/2\sigma^2} \]

because \(\frac{\partial c}{\partial t} = D \frac{d^2 c}{dx^2} \)

\[c(x, t) = \frac{1}{\sqrt{4\pi Dt}} e^{-x^2/4Dt} \quad \text{in one dimension} \]

\[\sigma^2 = 2Dt \quad \text{(which satisfies the Brownian Motion)} \]
Example 1

Imagine a long thin glass tube of length L and area A.
One end sits in a bath of pure water and the other end in a solution of ink in water.
Eventually, the system will reach the equilibrium with same ink concentration everywhere.

Prior to that, the system will reach the **quasi-steady state**, where \(c(x) \) is nearly unchanging over time.

\[
\begin{align*}
 c(0) &= c_0 \\
 c(L) &= 0 \\
 \frac{\partial c}{\partial t} &= 0 \text{ steady state}
\end{align*}
\]

\[
\frac{d^2 c}{dx^2} = 0 \text{ graph of } c(x) \text{ is a straight line}
\]

\[
c(x) = c_0 (1 - \frac{x}{L})
\]

flux of solute \(j = -D \frac{\Delta c}{L} \) where \(\Delta c = c(L) - c(0) \)
Fluorescence Recovery After Photobleaching (FRAP)

- FRAP denotes an optical technique capable of quantifying the diffusion of fluorescently-labeled biological molecules.
- Diffusion can be in 1-D in long processes (e.g. flagellum), 2-D on membrane proteins in a lipid bilayer or 3-D inside cytoplasm.
- (B) High power laser pulse is sent to photobleach all of the fluorescent probes in certain region.
- (C) Recovery of the fluorescent from the neighboring area is recorded as a function of time.
- (D) The half life of recovery is a function of diffusion constant.
- Recovered signal may be slightly lower than that of the original signal.
One Dimensional Model of FRAP

- Fluorescent molecules diffuse in a thin cylinder (e.g. inside *E.coli*) of length $2L$ ($-L < x < L$).
- Initial concentration of molecules is c_0 everywhere.
- After a short intense laser pulse, molecules in interval $-a < x < a$ are photobleached.
- Nonbleached molecules make their way into the box of size $2a$.

A) To compute the recovery curve, we need to define boundary conditions:

1) \[\frac{\partial c}{\partial t} = D \frac{d^2 c}{dx^2} \quad \text{Diffusion Equation} \]

2) \[c(x, 0) = \begin{cases} c_0 & -L < x < -a \\ 0 & -a < x < a \\ c_0 & a < x < L \end{cases} \quad \text{at } t = 0 \]

3) \[\frac{\partial c}{\partial x} = 0 \quad \text{at } x = L \text{ and } x = -L \quad \text{no material flows in and out the box} \]

4) \[c(x, t) = c(-x, t) \quad \text{concentration profile is symmetric} \]
B) Expand the concentration profile in cosine series

\[
c(x, t) = A_0(t) + \sum_{n=1}^{\infty} A_n(t) \cos\left(\frac{x}{L} n\pi\right)
\]

-boundary conditions are met:

1) \(\frac{\partial c}{\partial x} = 0 \) at \(x = L \) and \(x = -L \)
\[
\sin(n\pi) = 0
\]

2) \(c(x, t) = c(-x, t) \)
\[
\cos x = \cos(-x)
\]
C) Find $A_n(t)$

\[
\frac{\partial c}{\partial t} = D \frac{d^2 c}{dx^2} \quad \text{and} \quad c(x, t) = A_0(t) + \sum_{n=1}^{\infty} A_n(t) \cos \left(\frac{x}{L} n\pi \right)
\]

\[
\frac{\partial A_0(t)}{\partial t} + \sum_{n=1}^{\infty} \frac{\partial A_n(t)}{\partial t} \cos \left(\frac{x}{L} n\pi \right) = D \sum_{n=1}^{\infty} \left(-A_n(t) \frac{n^2 \pi^2}{L^2} \right) \cos \left(\frac{x}{L} n\pi \right)
\]

Due to orthogonal property of the cosine function for different n,

\[
\frac{\partial A_0(t)}{\partial t} = 0
\]

\[
\frac{\partial A_n(t)}{\partial t} = -\frac{Dn^2 \pi^2}{L^2} A_n(t)
\]

\[
A_n(t) = A_n(0) e^{-\frac{Dn^2 \pi^2}{L^2} t}
\]

Therefore \(c(x, t) = A_0(0) + \sum_{n=1}^{\infty} A_n(0) e^{-\frac{Dn^2 \pi^2}{L^2} t} \cos \left(\frac{x}{L} n\pi \right) \)
D) Find $A_n(0)$ at $t = 0$.

$$A_0(0) = \frac{1}{2L} \int_{-L}^{L} c(x, 0) dx = \frac{1}{2L} c_0 2(L - a) = c_0 \frac{L - a}{L}$$

$$A_n(0) = \frac{1}{2L} \int_{-L}^{L} c(x, 0) dx \cos \left(\frac{x}{L} n\pi \right) = -2c_0 \frac{\sin \left(\frac{a}{L} n\pi \right)}{n\pi}$$

E) Put everything together:

$$c(x, t) = c_0 \left[\frac{L - a}{L} - 2 \sum_{n=1}^{\infty} \frac{\sin \left(\frac{n\pi a}{L} \right)}{n\pi} e^{-\frac{Dn^2 \pi^2}{L^2} t} \cos \left(\frac{n\pi x}{L} \right) \right]$$
when \(t \gg \frac{L^2}{D} \) which is half the diffusion time of molecules in a box of length \(L \)

\[c = c_0 \left(1 - \frac{a}{L} \right) \] concentration profile is uniform

The number of fluorescent molecules in the bleached region:

\[N_f(t) = \int_{-a}^{a} c(x, t) \, dx \]

\[N_f(t) = c_0 \left(1 - \frac{a}{L} \right) 2a - 2c_0 L \sum_{n=1}^{\infty} \frac{\sin \left(\frac{n\pi a}{L} \right)}{n^2 \pi^2} e^{-\frac{Dn^2\pi^2}{L^2} t} \left[\sin \left(\frac{n\pi a}{L} \right) - \sin \left(\frac{-n\pi a}{L} \right) \right] \]

\[N_f(t) = c_0 \left(1 - \frac{a}{L} \right) 2a - 4c_0 L \sum_{n=1}^{\infty} \frac{\sin^2 \left(\frac{n\pi a}{L} \right)}{n^2 \pi^2} e^{-\frac{Dn^2\pi^2}{L^2} t} \]

The model predicts that the recovery is fastest when \(a = L/2 \)
Biased Diffusion

- A force F exerted on a particle results in a drift velocity:
 \[F = \zeta v_{drift} \]

- The movement of particles under the same net v_{drift} would generate a net flux:
 \[j_F = \frac{1}{A\Delta t} \Delta N \]

 where ΔN is the number of particles moving under the drift velocity to right.

 \[\Delta N = cA\Delta t \cdot v_{drift} \]

 \[j_F = cv_{drift} = c \frac{F}{\zeta} \]

- We can write the total flux due to random diffusion and net movement under the drift velocity:

 \[j(x) = -D \frac{dc}{dx} + \frac{F}{\zeta} c \]
\[j(x) = -D \frac{dc}{dx} + \frac{F}{\zeta} c \]

In equilibrium, the net flux vanishes, \(J(x) = 0 \)

\[D \frac{dc}{dx} = \frac{F}{\zeta} c \]

Nonuniform concentration gradient can be set up by force.

using separation of variables, \(\zeta D \frac{dc}{c} = F dx \)

\[\zeta D = kT \text{ and } F = -dU/dx \]

\[\frac{c(x)}{c(0)} = \frac{e^{-U(x)/kT}}{e^{-U(0)/kT}} \]
\[j(x) = -D \frac{dc}{dx} + \frac{F}{\zeta} \]

Out of equilibrium,

\[\frac{\partial c}{\partial t} = -\frac{\partial j}{\partial x} \]

\[
\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} - \frac{F}{\zeta} \frac{\partial c}{\partial x} \quad (\text{Nernst – Planck Equation})
\]

- Nernst – Planck Equation describes process that involve both external forcing and diffusion.
Pulse Equation under Bias

You release 1 billion molecules at position \(x = 0 \) in the middle of a narrow tube. The molecules, diffusion constant is 100 \(\mu m^2s^{-1} \). An electric field pulls the molecules to the right with drift velocity of 1 \(\mu m/s \). After 80s, what percentage of molecules will be on the left?

We learned that without bias, \(c(x, t) = \frac{1}{\sqrt{4\pi Dt}} e^{-x^2/4Dt} \) in one dimension.

In the presence of bias, the whole distribution of molecules shift to right

\[
\Delta x = v_{\text{drift}} t
\]

so, if we replace \(x \to x - v_{\text{drift}} t \) on the right hand side of the equation

\[
c(x, t) = \frac{1}{\sqrt{4\pi Dt}} e^{-(x-v_{\text{drift}} t)^2/4Dt}
\]
the number of molecules on the left, N:

$$N = 10^9 \int_{-\infty}^{0} c(x, t) dx = 10^9 \int_{-\infty}^{0} \frac{1}{\sqrt{4\pi Dt}} e^{-(x-v_{\text{drift}} t)^2 / 4Dt} dx$$

$$u = x - v_{\text{drift}} t / \sqrt{4Dt}$$

$$du = dx / \sqrt{4Dt}$$

$$x = 0 \Rightarrow u = -v_{\text{drift}} t / \sqrt{4Dt} = -z$$

$$z = \frac{1 \mu m s^{-1} 180 s}{\sqrt{4.100 \mu m^2 s^{-1} 1.80 s}} \approx \frac{80 \mu m}{125 \mu m} = 0.6$$

$$x = -\infty \Rightarrow u = -\infty$$

$$N = \frac{10^9 \sqrt{4Dt}}{\sqrt{4\pi Dt}} \int_{-\infty}^{-z} e^{-u^2} du$$
\[N = \frac{10^9 \sqrt{4Dt}}{\sqrt{4\pi Dt}} \int_{-\infty}^{-z} e^{-u^2} \, du \]

This integral is equivalent to the complementary error function:

\[\text{erfc}(z) = \frac{2}{\sqrt{\pi}} \int_z^\infty e^{-u^2} \, du \approx 1 - \frac{2}{\sqrt{\pi}} \left(z - \frac{z^3}{3.1!} + \frac{z^5}{5.2!} + \frac{z^7}{7.3!} \ldots \right) \text{ for small values of } z \]

since the function is symmetric, \(\int_z^\infty e^{-u^2} \, du = \int_{-\infty}^{-z} e^{-u^2} \, du \)

\[N = \frac{10^9}{\sqrt{\pi}} \int_{-\infty}^{-z} e^{-u^2} \, du \approx \frac{10^9}{\sqrt{\pi}} \left[\frac{\sqrt{\pi}}{2} - \left(z - \frac{z^3}{3.1!} + \frac{z^5}{5.2!} + \frac{z^7}{7.3!} \ldots \right) \right] \]

\[N = \frac{10^9}{\sqrt{\pi}} \left[\frac{\sqrt{\pi}}{2} - 0.53 \right] = 1.9 \times 10^8 \text{ molecules on the left} \]

only 19\% of molecules stay on the left.
The Role of Diffusion in Biological Reactions

- The cell membrane is uniformly decorated by receptor proteins.
- A signaling process depends on the arrival of ligand molecules and attachment to receptors.
- The spherical cell of radius R is introduced into a solution with concentration c_0 at the far distance.
- We assume that the cell membrane is a perfect absorber, that concentration of ligand at the surface is 0.
- In a steady-state,

$$\frac{\partial c}{\partial t} = 0 = -\nabla j = D \nabla^2 c$$

in spherical coordinates

$$\nabla^2 c = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial c}{\partial r} \right) = 0$$

$$r^2 \frac{\partial c}{\partial r} = A \text{ (constant)}$$

$$\frac{\partial c}{\partial r} = \frac{A}{r^2} \Rightarrow c(r) = -\frac{A}{r} + B$$
\[c(r) = -\frac{A}{r} + B \]

To find \(A \) and \(B \), we use the boundary conditions \(c(R) = 0, \ c(\infty) = c_0 \)

\[c(r) = c_0 (1 - \frac{r}{R}) \]

The flux of particles is

\[j(r) = -D \frac{\partial c}{\partial r} = -Dc_0 \frac{R}{r^2} \]

The number of particles arriving the cell membrane per unit time:

\[\frac{dn}{dt} = -j(R)4\pi R^2 = 4\pi DRc_0 \]

4\(\pi DRc_0 \) introduces the upper limit the reaction can occur if it is only limited by diffusion.
The Role of Diffusion in Biological Reactions

• What if the receptors have a finite rate of k_{on} in adsorbing ligands?
• The number of adsorbed ligands per unit time, where M is the number of receptors on the membrane:

$$\frac{dn}{dt} = Mk_{on}c(R)$$

similarly \(\frac{dn}{dt} = -j(R)4\pi R^2 \)

from mass conservation \(j(R)4\pi R^2 = j(r)4\pi r^2 \) where \(j(r) = -D \frac{\partial c}{\partial r} \)

$$Mk_{on}c(R) = D \frac{\partial c}{\partial r} 4\pi r^2$$

$$\int_{c(R)}^{c(r)} dc = \int_{R}^{r} \frac{Mk_{on}c(R)}{4\pi Dr^2} dr$$

$$c(r) - c(R) = \frac{Mk_{on}c(R)}{4\pi D} \left(\frac{1}{R} - \frac{1}{r} \right)$$

when \(r \to \infty \), \(c(R) = \frac{c_0}{1 + \frac{Mk_{on}}{4\pi DR}} \)
\[c(R) = \frac{c_0}{1 + \frac{Mk_{on}}{4\pi DR}} \]

If \(\frac{Mk_{on}}{4\pi DR} \gg 1 \rightarrow c(R) = 0 \)

If we have too many receptors with high on rate, we recover the perfect absorber limit

If \(\frac{Mk_{on}}{4\pi DR} \ll 1 \rightarrow c(R) = c_0 \)

Inversely, if we have very few receptors with low on rate,

Background concentration is not depleted at all.
Question: How many receptors do we need to achieve the diffusion limit, half of \((4\pi DRc_0)\)?

\[
\frac{4\pi DRc_0}{2} = Mk_{on}c(R) = M \frac{k_{on}c_0}{1 + \frac{Mk_{on}}{4\pi DR}}
\]

\[
\frac{1}{2} = \frac{\beta}{1 + \beta} \text{ where } \beta = \frac{Mk_{on}}{4\pi DR}
\]

\[
\beta = 1 \text{ and therefore } M = \frac{4\pi DR}{k_{on}}
\]

Typical numbers:

\(R = 10 \ \mu m \text{ for eukaryotic cell}\)

\(D = 100 \ \mu m^2 s^{-1} \text{ for small ligands}\)

\(k_{on} = 10 \ \mu M^{-1} s^{-1}\)

therefore, \(M \approx 10^5\) receptors on a cell membrane.

The area of the membrane is roughly 1200 \(\mu m^2\)

The mean spacing between receptors, \(\sqrt{<d^2>} = 100 \ nm\)
Universal Rate for Diffusion Limited Chemical Reactions

We learned that \(\frac{dn}{dt} = 4\pi DRc_0 \) is the diffusion limit.

Assuming that two reacting species are of the same size (same \(D \)), they must be within \(2R \) distance of each other.

The net diffusion constant for two diffusing particles will be \(2D \)

using \(D = \frac{kT}{6\pi \eta R} \) and replacing \(R \) with \(2R \), and \(D \) with \(2D \)

we obtain \(k_{\text{diff}} = \frac{dn}{dt} = \frac{8kT}{3\eta} \)