Tuning High-T_c Superconductors via Multistage Intercalation

Tuning High-\(T_c\) Superconductors via Multistage Intercalation

Multistage intercalation has been used to tune the interaction between adjacent blocks of CuO\(_2\) sheets in the high-\(T_c\) (high superconducting transition temperature) superconductor Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_y\). As revealed by atomic-resolution transmission electron microscopy images, foreign iodine atoms are intercalated into every \(n\)th BiO bilayer of the host crystal, resulting in structures of stoichiometry Bi\(_{2\text{~}n}\)Sr\(_{2\text{~}n}\)Ca\(_{n}\)Cu\(_{2\text{~}n}\)O\(_{y}\) with stage index \(n\) up to 4. An expansion of 3.6 angstroms for each intercalated BiO bilayer decouples the CuO\(_2\) sheets in adjacent blocks. A comparison of the superconducting transition temperatures of the pristine host material and intercalated compounds of different stages suggests that the coupling between each pair of adjacent blocks contributes \(-5 \text{~K to } T_c\) in Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_y\).

Although it is generally believed that the critical structural units in the highest \(T_c\), superconductors are the CuO\(_2\) planes, the significance of coupling between the planes is poorly understood. It was recently demonstrated that, like many other two-dimensional materials, Bi-based high-\(T_c\) superconducting oxides can be intercalated with foreign species (1). For stage-1 iodine-intercalated Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_y\), guest iodine atoms are introduced between every pair of weakly bonded BiO bilayers, thus affecting the coupling between identical host blocks containing the double CuO\(_2\) planes. In some intercalation compounds, higher stage structures are possible: a stage-\(n\) structure has \(n\) identical host layers or blocks sandwiched between each pair of intercalant layers. High-stage single-phase graphite intercalation compounds can be synthesized with \(n\) as high as 8 (2), but in other layered compounds it is difficult to achieve single-phase intercalation with \(n > 1\). The possibility of using intercalants to vary the strength of interlayer interactions and possibly modify microscopic charge transfer makes the intercalation of high-\(T_c\) compounds attractive. Systematic investigation of the superconductivity mechanism and its relation to crystal structure is possible if different intercalants can be incorporated and higher stage compounds can be generated.

We here examine interblock interactions in the high-\(T_c\) superconductor Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_y\) by using multistage iodine intercalation to "tune" the coupling between adjacent CuO\(_2\)-containing blocks. Atomic resolution real-space transmission electron microscopy (TEM) images identify stage structures with \(n \leq 4\). Correlations between the crystal structure and \(T_c\) allow us to determine the contributions to \(T_c\) of interblock CuO\(_2\) plane interactions and to evaluate various models for the superconductivity mechanism.

In the intercalation of pristine Bi\(_2\)Sr\(_2\)Ca-
Cu$_2$O$_x$ crystals we used a gas diffusion technique similar to that described elsewhere (1). For high-stage intercalation, iodine and Bi$_2$Sr$_{2}$CaCu$_2$O$_x$ crystals were placed in evacuated cells with a common connection for vapor transport. The iodine cell was held at 150°C and the sample cell at between 300°C and 350°C for up to 2 weeks. Intercalated crystal structures were characterized by x-ray diffraction and by TEM. In general, intercalation resulted in a complete disappearance of the pristine phase. As with stage-1 materials, nearly phase-pure stage-2 materials could be produced. Stage-3 and stage-4 structures were obtained only as minority phases.

Figure 1, a through d, shows real-space TEM images, respectively, for pristine Bi$_2$Sr$_{2}$CaCu$_2$O$_x$ and stage-1, stage-2, and stage-3 iodine-intercalated crystals, all viewed along the [110] direction. In each case, pristine-like BiO bilayers are identified by bars and iodine-intercalated BiO bilayers by arrows. The image in Fig. 1a agrees with the established crystal structure of pristine Bi$_2$Sr$_{2}$CaCu$_2$O$_x$. For the stage-1 material (Fig. 1b), iodine is intercalated into every BiO bilayer; for the stage-2 material (Fig. 1c), iodine is intercalated into every other BiO bilayer; for the stage-3 material (Fig. 1d), iodine is intercalated into every third BiO bilayer. The resulting intercalated stage structures have stoichiometry $\text{Bi}_2\text{Sr}_2\text{Ca}_2\text{Cu}_{x+n}\text{O}_{2x+n}$, where n is the stage index. Structures with $n \leq 4$ have been identified in TEM images. In all cases, the iodine intercalation is epitaxial (the iodine is located between oxygens of the BiO layers) and results in two major structural changes. First, it expands each intercalated BiO bilayer by 3.6 Å along the c axis. Second, it changes the staggered Bi atom stacking sequence (between adjacent BiO bilayers) to a commonly registered stacking sequence. For example, the stacking sequence AB...BA...A/AB relevant to pristine Bi$_2$Sr$_{2}$CaCu$_2$O$_x$ changes in the stage-2 compound to AB...B/B...BA...A/A...AB. A and B represent BiO layers shifted by 1/2 a with respect to each other, the dotted lines represent the other elements inside the block, and the slash represents the iodine intercalant.

The ability to produce largely homogeneous stage-1 and stage-2 compounds of $\text{Bi}_2\text{Sr}_2\text{Ca}_2\text{Cu}_2\text{O}_x$ allows a direct comparison between structural and superconducting properties. Figure 2 shows the magnetic susceptibility, χ_{ac}, as a function of temperature for pristine Bi$_2$Sr$_{2}$CaCu$_2$O$_x$, stage-1 Bi$_2$Sr$_{2}$CaCu$_2$O$_y$, and stage-2 Bi$_4$Sr$_{2}$Ca$_4$Cu$_6$O$_{19}$. Well-defined transitions to the superconducting state are visible in each case. Consistent with previous studies, T_c for stage-1 iodine-intercalated Bi$_2$Sr$_{2}$CaCu$_2$O$_x$ is 80 K, corresponding to a ~10 K depression in T_c compared to the pristine host material. T_c for stage-2 Bi$_2$Sr$_{2}$Ca$_2$Cu$_2$O$_x$ is 85 K, corresponding to a ~5 K depression in T_c. It is unlikely that the shift in T_c is due to charge transfer between the iodine and host material. The iodine is only weakly bonded to the BiO layers, and the distance between the intercalated layers and the CuO$_2$ planes is large. Transport measurements (3) on the stage-1 material have confirmed that the normal state behavior of the CuO$_2$ planes remains unchanged by the intercalation. The shift in T_c for different intercalation stage structures can therefore be assumed to be a consequence of changes in the interblock coupling (4, 5). The dominant effect of intercalation is to reduce interblock coupling, which results from an increase in the distance between the CuO$_2$-containing blocks. Stage-1 intercalation reduces the adjacent block coupling in both directions along the c axis, whereas stage-2 intercalation preserves the original coupling in one direction for each block. Because ΔT_c for the stage-1 material is ~10 K while ΔT_c for the stage-2 material is ~5 K, empirically it appears as if next-block coupling contributes about 5 K to T_c for each neighboring block of pristine Bi$_2$Sr$_{2}$CaCu$_2$O$_x$.

Our results suggest that, independent of the specific pairing mechanism, interblock coupling should be incorporated into any realistic model of high-T_c superconductivity. Here we examine two prototypical layering models; both are capable of accounting for the behavior of T_c upon multistage intercalation. No specific microscopic mechanism is assumed, and the parameters in each model are determined here phenomenologically.

The simplest layer-coupling model is one in which T_c varies linearly with the interplane coupling. Each CuO$_2$ plane is coupled to its neighbors in the c direction, but intraplane coupling is neglected. Wheatley, Hsu, and Anderson (6) used this type of model to discuss superconductivity due to spinon-holon scattering. Despite inconsistencies in the spinon-holon theory as a whole revealed by transport measurements (3), the layering model used by Wheatley et al. is non-mechanism-specific. Here we apply the layering scheme to the present experiment to discuss the effects of intercalation and exhibit the merits of this approach.

In the linear layering model, the superconducting amplitude in plane i, η_i, depends on η_{i+1} and η_{i-1} and the couplings between the planes, λ_{i+1} and λ_{i-1}. For Bi$_2$Sr$_{2}$CaCu$_2$O$_x$, there are two different couplings, λ_0 and λ_1, for nearest and next nearest planes, respectively. The nearest planes are within a block, whereas the next nearest planes are in adjacent blocks. Because all the CuO$_2$ planes are equivalent, all the η's are equal and the eigenvalue equation for T_c.
\[(\lambda_0 + \lambda_1) \eta = T_c \eta \]
(1)
yields \(T_c \) (pristine) = \(\lambda_0 + \lambda_1 \).

For stage-1 \(\text{Bi}_2\text{Sr}_2\text{Ca}_3\text{Cu}_2\text{O}_8 \), the model is the same but with \(\lambda_1 \) replaced by \(\lambda_1' \) because the next nearest plane coupling is assumed to be grossly affected by the intercalation. The predicted stage-1 \(T_c \) is then \(\lambda_0 + \lambda_1' \).

For stage-2 \(\text{Bi}_2\text{Sr}_2\text{Ca}_3\text{Cu}_2\text{O}_8 \), the \(\text{CuO}_2 \) planes are no longer equivalent; there are planes (a) coupled by \(\lambda_0 \) and \(\lambda_1 \) and planes (b) coupled by \(\lambda_0 \) and \(\lambda_1' \). The eigenvalue equation for \(T_c \) is then

\[T_c \begin{pmatrix} \eta_a \\ \eta_b \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_0 \lambda_1' \\ \lambda_0 & \lambda_0 \lambda_1 \end{pmatrix} \begin{pmatrix} \eta_a \\ \eta_b \end{pmatrix} \]
(2)

If we assume that intercalation completely destroys the next nearest plane coupling, then \(\lambda_1' \to 0 \), and the measured \(T_c \) (stage-1) yields \(\lambda_0 = 80 \) K. With \(T_c \) (stage-2) = 85 K, \(\lambda_0 = 80 \) K, and \(\lambda_1' = 0 \) K, we find \(\lambda_1 = 9.7 \) K. This is consistent with the results for the pristine material, where \(T_c \) is typically 90 K (= \(\lambda_0 + \lambda_1 \)).

It is possible to use the above analysis to predict the \(T_c \)'s for higher stage compounds. If \(\lambda_0 = 80 \) K, \(\lambda_1 = 10 \) K, and \(\lambda_1' = 0 \) K, the predicted \(T_c \)'s for stages 3, 4, 5, and 6 are 87, 88, 89, and 89 K, respectively. Although we have demonstrated that stage-3 and stage-4 structures exist for iodine-intercalated \(\text{Bi}_2\text{Sr}_2\text{Ca}_3\text{Cu}_2\text{O}_8 \), we have not been able to reliably determine the \(T_c \)'s for these minority phases.

A second approach incorporates interplane interactions into a Bardeen-Cooper-Schrieffer (BCS)-like framework. Such a model has been advanced by Ihm and Yu (7), although they neglected interblock coupling. Because our experiments indicate that this coupling cannot be neglected, we incorporate such a coupling into a phenomenological model (which is essentially an extension of the original work of Ihm and Yu).

Solving the BCS-like gap equations, assuming a constant density of states per \(\text{CuO}_2 \) plane (even after intercalation), one obtains

\[F(\text{pristine}) = \frac{1}{\lambda_0 + \lambda_1} \]
(3)

\[F(\text{stage-1}) = \frac{1}{\lambda_0 + \lambda_1} \]
(4)

\[F(\text{stage-2}) = \frac{1}{\lambda_0 + \lambda_1} \]
(5)

\[F(\text{Bi-2223}) = \frac{1}{\lambda_0 + \lambda_1} \]
(6)

where \(F(\Delta_0) = \int_{-\infty}^{\infty} \text{tanh}(e^2 + \Delta_0^2)^{1/2}/2kT \) is the gap function \(\Delta \) is

In conclusion, we have shown that high-stage iodine intercalation of \(\text{Bi}_2\text{Sr}_2\text{Ca}_3\text{Cu}_2\text{O}_8 \) is possible. The shifts in \(T_c \) of the intercalated materials demonstrate that interblock coupling is an important ingredient in describing high-\(T_c \) copper oxides. In \(\text{Bi}_2\text{Sr}_2\text{Ca}_3\text{Cu}_2\text{O}_8 \), coupling between each pair of adjacent \(\text{CuO}_2 \)-containing blocks contributes \(\sim 5 \) K to \(T_c \).

REFERENCES AND NOTES

3. X.-D. Xiang et al., unpublished data.
8. This work was supported by the director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under contract DE-AC03-76SF00098. J.L.C., T.W.B., and M.L.C. were also supported by National Science Foundation grant DMR88-18404. J.L.C. acknowledges support from an AT&T Ph.D. fellowship. M.L.C. acknowledges support from the J.S. Guggenheim Foundation.

5 September 1991; accepted 4 October 1991