The GT experiment was funded by Office of Exploration Research, U.S. Environmental Protection Agency, contract 8817121, and National Science Foundation grant ATM 9021502, and the AL experiment was funded by the National Oceanic and Atmospheric Administration Radiatively Important Trace Species Program.

13 January 1992; accepted 13 March 1992

Synthesis and Electronic Transport of Single Crystal K$_3$C$_{60}$

Sizable single crystals of C$_{60}$ have been synthesized and doped with potassium. Above the superconducting transition temperature T_c, the electrical resistivity $\rho(T)$ displays a classic metal-like temperature dependence. The transition to the superconducting state at $T_c = 19.8$ K is extremely sharp, with a transition width $\Delta T < 200$ mK. In contrast to transport behavior of doped polycrystalline and granular thin films, no anomalous fluctuations are observed near T_c in single crystal specimens.

The discovery of superconductivity in heavy alkali metal-doped C$_{60}$ (1) has generated great theoretical and experimental interest. Although many experimental results of doped fullerences have begun to shed some light on the underlying physics of these unique materials, nearly all previous measurements have been performed on weakly linked polycrystalline (2) or granular thin films samples (3). Reliable measurements on single crystals are essential for establishing intrinsic properties and determining the superconductivity mechanism.

We report here the synthesis and electronic transport measurements of high-quality single crystals of K$_3$C$_{60}$. Measurements of the dc electrical resistivity $\rho(T)$ show an intrinsic metal-like temperature dependence below room temperature, with an extremely sharp transition to the superconducting ground state at $T_c = 19.8$ K; no evidence is found for strong fluctuation effects near T_c. These results are in sharp contrast to the behavior of polycrystalline and thin film samples.

To prepare the undoped crystals, pure C$_{60}$ powder was first extracted from carbon soot via standard liquid chromatography with an alumina column. The powder was baked at 250°C under dynamic vacuum for 24 hours and then sealed in quartz tubes with a few hundred torr of argon gas. Sealed tubes were placed in a gradient furnace with the powder held at 650°C crystals formed in the tube at about 450°C. With this vapor transport method, crystals with flat, shiny faces up to a few millimeters across could be obtained in a few days. X-ray diffraction studies confirmed the fcc (face-centered cubic) crystal structure and lattice constant reported previously (4) for solid C$_{60}$.

Electrical contacts to the samples were made prior to doping by first evaporating silver onto the crystal surfaces and then attaching gold wires with conducting silver paint. Both Van der Pauw (5) and line four-probe geometries were employed (with similar results). The mounted samples were then sealed together with fresh potassium metal in a Pyrex glass apparatus with tungsten feedthrough leads. Uniform doping was accomplished using a repetitive high-temperature dope-anneal cycle. First, both the sample and dopant were heated uniformly in a furnace while the sample resistance was continuously monitored. The temperature was raised from room temperature to about 200°C at a rate of 6°C per minute. At about 150°C, the resistance of the sample dropped down to within the measurable range of the ohm meter (20 mΩ); thereafter the resistivity of the sample dropped continually to a few hundred mΩ within a few minutes. The tube was maintained at about 200°C for approximately one-half hour until the resistance of the sample reached a minimum. At this point the potassium end of the tube was cooled to room temperature and the sample was annealed at about 200°C to 250°C overnight. Then the potassium end was reheated to ~200°C and the sample was further doped until a lower resistivity minimum was reached. The sample alone was then again annealed for several hours. This doping and annealing process was repeated until the resistance reached an equilibrium state. For transport measurements the sample cell was injected with a helium exchange gas to ensure good thermal conduction, and a diode temperature sensor was mounted in the cell adjacent to the crystal.

The dc electrical resistivity ρ was measured versus temperature for a crystal of K$_3$C$_{60}$ (Fig. 1). Crystals from different preparation batches yielded similar results. Near room temperature the resistivity is about 5 mΩ cm, comparable to that obtained for K$_3$C$_{60}$ films at room temperature (1, 3). However, because of geometrical uncertainties associated with the contact pads, the absolute value of the resistivity should be considered reliable only to within a factor of 2. Below room temperature, $\rho(T)$ falls in a metal-like fashion with distinct curvature. At T_c the resistivity drops abruptly to zero, with a transition width $\Delta T < 200$ mK. The inset in Fig. 1 shows $\rho(T)$ near T_c in detail. The temperature has been swept slowly (~50 mK per minute) near the transition temperature showing no difference in T_c between cooling and warming.

The $\rho(T)$ behavior shown in Fig. 1 for the single crystal is in contrast to $\rho(T)$ observed by other groups for potassium-

*To whom correspondence should be addressed.
doped CeO$_2$ (3, 6). Thin film samples (3) show a semiconductor-like upturn in $\rho(T)$ above T_c and a severely broadened transition to the superconducting state. We conclude that this behavior is not intrinsic but due to imperfections such as grain boundaries (3). In fact, our own transmission electron microscopy studies on thin CeO$_2$ films (7) show that the grain size of freshly deposited films maintained in air at room temperature changes from ~0.5 μm to <200 Å over a period of several days. Hence, conclusions drawn from thin film transport data may be suspect.

The quality of our resistivity data and the sharpness of the transition to the superconducting state allow a rest of various fluctuation mechanisms. We have attempted to fit $\rho(T)$ near T_c to one-, two-, one-, and zero-dimensional fluctuation expressions (8). In all cases, the agreement with experimental data is poor. Hence, we conclude that K$_x$CeO$_2$ displays no substantial fluctuation conductivity near the onset of the superconducting state.

The overall temperature dependence of $\rho(T)$ above T_c places constraints on nominal-state transport models. Preliminary analysis indicates that the temperature dependence of the resistivity can be fit to a T^2 functional form, a result consistent with electron-electron scattering, although electron-electron scattering has not been observed at such high temperatures in other systems. The observed temperature dependence can also be accounted for with an electron-phonon scattering mechanism (9) if there is a high-frequency contribution from the intraband phonons and a lower frequency contribution from phonons with frequencies in the range of 10 to 200 K.

REFERENCES AND NOTES

10. This research was supported by National Science Foundation grant DMR8-1504 and by the Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under contract DE-AC02-76SF00596. V. H. G. was supported by a National Defense Science and Engineering Graduate Fellowship.

21 February 1992; accepted 16 April 1992

Scandium Clusters in Fullerene Cages

Costantino S. Yannoni, Mark Hoikins, Mattanah S. de Vries, Donald S. Bethune, Jesse R. Salem, Mark S. Crowder, Robert D. Johnson

The production and spectroscopic characterization of fullerene-encapsulated metal-atom clusters is reported. In particular, both solution and solid-state electron paramagnetic resonance (EPR) spectra of Sc$_2$C$_{82}$ have been obtained. Sc$_{2}$C$_{82}$ also gives an EPR spectrum, but Sc$_2$C$_{82}$ species—the most abundant metalfullerenes in the mass spectrum—are EPR-silent even though Sc$_2$C$_{82}$ is EPR-active in a rare-gas matrix at 4.2 K. The results suggest that the three scandium atoms in Sc$_2$C$_{82}$ form an equilateral triangle—as was previously suggested for Sc$_2$C$_{60}$ in a cryogenic rare-gas matrix. The spectrum of Sc$_2$C$_{82}$ has features similar to those found earlier for LaC$_{82}$ and YC$_{82}$, suggesting that it can also be described as a +3 metal cation within a ~3 fullerene radical anion. An implication of this work is that production of macroscopic quantities of clusters containing fullerenes may make possible the fabrication of exotic new structures with regular arrays of metal-atom clusters isolated in fullerene molecules, resulting in a new type of host-guest nanostructured material.

The results of carbon cluster-beam experiments (1–5) and the chemical stability recently observed for LaC$_{82}$ (6, 7), La$_2$C$_{80}$ (8), YC$_{82}$, Y$_2$C$_{82}$ (9), and FeC$_{82}$ (10) indicate that entrapping metal atoms in C. S. Yannoni, M. Hoikins, M. S. de Vries, D. S. Bethune, J. R. Salem, R. D. Johnson, BM Research Division, Alliance Research Center, 650 Harry Road, San Jose, CA 95123-0239.

M. S. Crowder, IBM Almaden, 5600 Cottle Rd., San Jose, CA 95120.

The fullerene cages provide a method for isolating and stabilizing reactive species under ambient conditions. We report here the use of this method to obtain spectroscopic data on fullerene-encapsulated metal-atom clusters (11). In particular, both solution and solid-state electron paramagnetic resonance (EPR) spectra of Sc$_2$C$_{82}$ have been obtained. Sc$_2$C$_{82}$ also gives an EPR spectrum, but Sc$_2$C$_{82}$ species—the

Most abundant metalfullerenes in the mass spectrum—are EPR-silent even though Sc$_2$C$_{82}$ is EPR-active in a rare-gas matrix at 4.2 K (12). The results suggest that the three scandium atoms in Sc$_2$C$_{82}$ form an equilateral triangle—as was previously suggested for Sc$_2$C$_{60}$ (7), suggesting that it can also be described as a +3 metal cation within a ~3 fullerene radical anion. A broader implication of this work is that production of macroscopic quantities of cluster-containing fullerenes may make possible the fabrication of exotic new structures with regular arrays of metal-atom clusters isolated in fullerene molecules, resulting in a new type of host-guest nanostructured material (14).

Metalfullerene samples were prepared by arc-vaporization of 6-mm-diameter graphite rods that were core-drilled and packed with carbon nanotubes, nanochips, and graphite powder. Arc-burning was carried out in the usual manner in He at 200 torr (3, 15). The scot was collected, extracted with toluene, washed with diethyl ether, and dried. Mass spectra of the extract showed (in addition to C$_{82}$ and C$_{70}$) several metalfullerenes, Sc$_2$C$_{82}$, with the diatomic species (m = 2, 80 ≤ n ≤ 90) in the majority. The principal one-and three-scandium metalfullerenes peaks were Sc$_2$C$_{82}$ and Sc$_2$C$_{82}$, with the C$_{82}$ homologs present in lesser quantities. Toluene solution of this extract was degassed with a freeze-pump-thaw cycle and sealed in quartz tubes for EPR spectroscopy.

The room-temperature EPR spectrum of such a solution is shown in Fig. 1, curve a. Qualitatively, the spectrum appears to be the superposition of two spectra centered around $g = 2$, one consisting of eight equally spaced lines of roughly equal intensity and the other a symmetrical pattern of 22 lines, with intensities decreasing monotonically outward from the spectral center. We have been able to simulate the experimental spectrum by superposing simulated EPR spectra with isotropic electron-nuclear hyperfine coupling in species that contain (i) three equivalent scandium nuclei (Fig. 1, curve c) and (ii) a single scandium nuclear spin (Fig. 1, curve d) (49Sc is 100% abundant with a nuclear spin of 7/2). The spectrum with hyperfine coupling to a single scandium nucleus consists of eight equally spaced lines with equal intensity, while the three-spin simulation generates 22 lines with relative intensities 1:3:6:10:15:21:28:36:42:46:48:54:64:72:78:82:90:106:131:156:186:222:258:300.

The superposition of Fig. 1, curves c and d, yields the simulation shown in Fig. 1, curve b, in excellent agreement with experiment.

SCIENCE • VOL. 256 • 22 MAY 1992

1191