Stabilization of the Tl$_2$Ba$_2$Ca$_2$Cu$_3$O$_{10}$ superconductor by Hg doping

Y.X. Jia *, C.S. Lee, A. Zettl

Department of Physics, University of California at Berkeley, and Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA

Received 3 June 1994; revised manuscript received 26 September 1994

Abstract

Hg doping of the triple-CuO$_2$ layer oxide superconductor Tl$_{2-x}$Hg$_x$Ba$_2$Ca$_2$Cu$_3$O$_{10}$ (TI-2223) is investigated. Modest substitution of Hg$^{2+}$ ions for Ti$^{3+}$ ions leads to the stabilization of the TI-2223 structure and an apparently optimized superconducting onset temperature $T_c=130$ K. The situation is reminiscent of partial Bi ions replacement by Pb ions in the lower-T_c Bi based oxide superconductors. Overdoping with Hg in TI-2223 leads again to a decrease in T_c.

The superconducting transition temperature for pure Tl$_2$Ba$_2$Ca$_2$Cu$_3$O$_{10}$ (TI-2223, the highest-T_c TI based oxide superconductor) apparently varies from 113 K to 127 K even if the compound has an optimized oxygen concentration. Indeed, nearly all physical measurements on TI-2223 reported in the literature are for samples with T_c in the range 113 K to 120 K [1]. It is apparent that an overall optimized, stable phase of this material is difficult to achieve, and even the maximum possible T_c for TI-2223 is still an open question. Many technologically relevant superconductor parameters are enhanced when the crystal structure is stabilized, and such a stable phase is crucial for reliable and reproducible measurement of physical properties. The observation [2] that Pb doping in the Bi-O planes of the related material Bi$_2$Sr$_2$Ca$_2$Cu$_3$O$_{10}$ stabilizes that structure suggests that a similar result can be achieved in TI-2223 by doping into the TI-O planes. Hg is a favorable candidate for such a substitution. We have found that partial substitution of Ti ions by Hg ions in TI-2223 produces a stable double-(Ti/Hg)O layered phase with a highly reproducible onset T_c of 130 K.

We have investigated the effects of Hg doping in the TI-2223 superconductor by preparing a series of samples with final stoichiometry Tl$_{2-x}$Hg$_x$Ba$_2$Ca$_2$Cu$_3$O$_{10-y}$ with x ranging from 0 to 1. With $x=0$ (pure TI-2223), the as-prepared samples display variable T_c's ranging from 115 K to 123 K, depending on the preparation conditions. There is little T_c improvement upon oxygen annealing. This behavior is consistent with previous studies of TI-2223 [1] and indicates typically a non-optimized structural configuration for the material even after oxygen annealing. With $x \neq 0$, however, we find the striking result that, independent of preparation conditions, the addition of small quantities of Hg in TI-2223 consistently produces superconductors with onset T_c's as high as 130 K. Subsequent oxygen annealing is not necessary nor does it have a marked effect on T_c or the volume fraction of superconductivity in the specimen. Hg doping into the TI-O layers of TI-2223 leads directly to a stabilized phase with an optimized oxygen stoichiometry and a maximized T_c.

* Corresponding author.
Bulk polycrystalline specimens in the Tl-2223 structure with final stoichiometry \(\text{Tl}_{2-x}\text{Hg}_{x}\text{Ba}_2\text{Ca}_2\text{Cu}_3\text{O}_{10-x} \) with \(x \) ranging from 0 to 1 were synthesized by a two-step solid-state reaction technique [3,4]. A precursor of \(\text{Ba}_2\text{Ca}_2\text{Cu}_3\text{O}_7 \) was prepared by dissolving appropriate amounts of the high-purity metal nitrates \(\text{Ba(NO}_3\text{)}_2 \), \(\text{Ca(NO}_3\text{)}_2 \cdot 4\text{H}_2\text{O} \), and \(\text{Cu(NO}_3\text{)}_2 \cdot 3\text{H}_2\text{O} \) into de-ionized water. The solution was heated and mixed at \(\sim 200^\circ\text{C} \) until it dried into a blue powder. This powder was calcined in air at 620\(^\circ\text{C} \) for 1 h and then slowly heated to 900\(^\circ\text{C} \) over 1 h. The resulting powder was ground, pressed into pellets, and annealed at 920\(^\circ\text{C} \) for 48 h in a pure oxygen flow. Appropriate amounts of \(\text{HgO} \) and \(\text{Tl}_2\text{O}_3 \) were then completely mixed and intimately ground with the precursor in a glove box. The resulting powder was again pressed into pellets which were vacuum sealed into quartz tube ampules. The quartz ampules were heated slowly to a temperature between 860\(^\circ\text{C} \) and 870\(^\circ\text{C} \) maintained at that temperature for 5 to 6 h, and then cooled to room temperature within 3 h.

The powder X-ray diffraction patterns of these samples are consistent with a \(\text{2223-type structure} \) [5]. Fig. 1 shows the X-ray patterns of Hg doped Tl-2223 samples with (a) \(x=0.3 \) and (b) \(x=0.6 \). All the major peaks correspond to the (Tl/Hg)-2223 phase. The lattice parameters of Hg doped Tl-2223 are reported in Table 1, which shows that as the Hg doping level increases, the \(a \) lattice parameter changes little (within our experimental error of \(\pm 0.01 \)), but the \(c \) lattice parameter slightly increases with increasing Hg concentration. Since the ionic radius of Hg is larger than that of Tl, the increase of the \(c \) lattice parameter is more likely due to a aferic effect. The minor impurity phases detected include \(\text{BaCuO}_2 \) and \(\text{Ca}_2\text{Cu}_3\text{O}_5 \). For the \(x=1 \) sample, a secondary superconducting phase, Tl-1223, was also detected in addition to the above-mentioned impurity phases. Energy dispersive X-ray spectroscopy (EDX) also demonstrates that the incorporated \(\text{Hg} \) ions substitute for \(\text{Tl} \) ions. Modest amounts of Hg doping result in the formation of a stable Hg doped Tl-2223 phase, independent of the stoichiometry of the starting materials. For example, a non-ideal starting stoichiometry of the form (Tl/Hg)-1223 results in a phase-separated sample with the superconducting portion in the 2223 structure. This demonstrates an enhanced stability of the Hg doped Tl-2223.

![Fig. 1. X-ray diffraction patterns of Hg-doped Tl-2223 samples with (a) \(x=0.3 \) and (b) \(x=0.6 \). The reflections (hk\(l \)) are indexed as shown. Peaks marked with (*) are due to impurity phases.](image)

<table>
<thead>
<tr>
<th>Hg concentration ((x))</th>
<th>(a) ((\text{\AA}))</th>
<th>(b) ((\text{\AA}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x=0.0)</td>
<td>3.849</td>
<td>35.662</td>
</tr>
<tr>
<td>(x=0.3)</td>
<td>3.846</td>
<td>35.740</td>
</tr>
<tr>
<td>(x=0.4)</td>
<td>3.843</td>
<td>35.754</td>
</tr>
<tr>
<td>(x=0.6)</td>
<td>3.841</td>
<td>35.816</td>
</tr>
</tbody>
</table>

The superconducting properties of the samples were characterized by electrical measurements and DC magnetization measurements using a SQUID magnetometer. Fig. 2 shows the temperature dependence of the magnetic susceptibility for a \(\text{Tl}_{2-x}\text{Hg}_x\text{Ba}_2\text{Ca}_2\text{Cu}_3\text{O}_{10-x} \) sample with \(x \approx 0.4 \). For these measurements, the bulk sample was finely powdered in order to avoid problems due to intergrain coupling. As Fig. 2 shows, the magnetically determined onset \(T_c \) is \(\sim 127 \text{ K} \) from both the shielding
Fig. 2. Temperature dependence of the magnetic susceptibility for a Hg doped Tl-2223 sample with $x=0.4$ measured at $H_0=10$ Oe.

(zero-field cooled) and the Meissner (field-cooled) measurements. The shielding volume fraction of the sample reaches 89% and the Meissner volume fraction reaches 37% at low temperatures.

Fig. 3(a) shows the temperature dependence of the electrical resistivity for samples of Tl$_{2-x}$Hg$_x$Ba$_2$Ca$_2$Cu$_3$O$_{10-y}$ with $x=0$, 0.4, and 0.6. For all the samples, the resistivity exhibits a linear temperature dependence in the range 300 to \sim 140 K. At room temperature the Hg doped samples have a higher resistivity than the undoped specimen (we note that pure Hg-1223, not shown in the figure, has a significantly higher resistivity of $\rho=27$ mΩ cm at 300 K [6]). The sample with $x=0$ shows a behavior typical of an undoped Tl-2223: a superconducting onset at 122 K and zero resistance at 116 K. The sample with $x=0.4$ shows onset of superconductivity at 130 K and zero resistivity at 126 K, while the sample with $x=0.6$ displays a superconducting onset at 125 K and zero resistance at 122 K.

As Fig. 3(a) demonstrates, Hg doping can increase the superconducting onset temperature of as-grown Tl-2223 compounds. It is well known that T_c for some superconducting oxides is a sensitive function of the oxygen stoichiometry, and the T_c of Hg-1223 can be enhanced significantly by oxygen annealing [6,7]. To explore this possibility in Hg doped Tl-2223, we performed oxygen annealing on previously characterized samples.

Fig. 3(b) shows the temperature dependence of the resistance of Hg doped Tl-2223 with $x=0.4$ both before and after oxygen annealing. After the initial measurement on the as-synthesized sample was performed, the same sample with Au leads attached was annealed in a pure oxygen flow at 300°C for 10 h. As Fig. 3(b) shows, the sample has the same onset temperature (130 K) and zero-resistivity temperature (126 K) both before and after oxygen annealing. The value of the resistivity at room temperature is 3.7 mΩ cm for the as-synthesized sample and 2.9 mΩ cm after oxygen treatment. Oxygen annealing changes the value of the normal-state resistivity but not the superconducting-transition temperature. This result suggests that as-synthesized specimens of Hg doped Tl-2223 are already in an optimized oxygen configuration state, and no further increase of T_c is possible through oxygen annealing. On the other hand, elevated temperature annealing reduces the disorder of the system and therefore lowers the normal-state resistivity.
We have investigated the maximum possible T_c for Hg-doped Tl-2223 over a broad range of Hg concentration. Fig. 4 shows the resistively determined onset and zero-resistance T_c's for Hg doped Tl-2223 versus Hg concentration x. The data indicate a maximum T_c near $x \approx 0.4 \text{--} 0.5$. For $x \gtrapprox 0.6$, T_c again decreases. We have not successfully synthesized a pure Hg compound in the Tl-2223 structure (i.e. with $x=2$).

We now briefly discuss the stabilization of the Tl-2223 by moderate Hg doping. Pure Tl-2223 with ideal stoichiometry would have all the copper atoms in the 2+ state, making it an insulator. A higher Cu valence state, which is necessary for a cuprate to be superconducting, is created via the substitution of Ti$^{3+}$ with Ca$^{2+}$, vacancies at cation sites, and the internal redox reaction Ti$^{3+} + Cu^{2+} = Ti^{(3-x)+} + Cu^{(2+x)+}$. These complex internal mechanisms are difficult to control during synthesis and consequently there results for “pure” Tl-2223 a range of superconducting transition temperatures between 113 K and 127 K even for those samples with optimal oxygen concentrations. Partial substitution of Ti$^{3+}$ with Hg$^{2+}$ increases the effective Cu valence and brings the system from an under-doped regime to an optimally doped regime and thus promotes the formation of the 2223 phase. As the Hg concentration increases further (beyond $x=0.6$), the system goes from the optimally doped regime to an overdoped regime, resulting in the observed decrease of T_c. Further oxygen annealing is unable to enhance T_c for these specimens.

The ability to use Hg doping to easily and reproducibly achieve a stabilized 130 K high-T_c structure has important implications. First, the measurement of intrinsic materials properties is greatly facilitated with the availability of high-quality, reproducible samples. Second, our findings may have technological implications. The ability to prepare stable, high-T_c structures which do not require post-synthesis anneals or other treatments is often crucial in thin-film and device applications. The high reproducible 130 K onset superconducting temperature, which is the highest reported for a Ti based oxide superconductor, also suggests a stabilization of other important parameters, such as the critical current, critical field, elastic moduli, and resistance to structural degradation.

Note added

Recently Goutenoire et al. [8] have published results of Hg doping in Tl-2223. Their findings for $x=0.4$ are in agreement with the $x=0.4$ results presented here.

Acknowledgements

This research was supported by National Science Foundation Grant DMR90-17254 and by the Office of Energy Research, Office of Basic Energy Science Division of U.S. Department of Energy under contract DE-AC03-76SF0098. YXJ acknowledges the support of a postdoctoral fellowship from the Miller Institute for Basic Research at the University of California at Berkeley.

References

