ELASTIC ANOMALIES IN THE CHARGE DENSITY WAVE CONDUCTOR $K_0.3MoO_3$

L. C. Bourne and A. Zettl
Department of Physics
University of California, Berkeley
Berkeley, CA. 94720

(Received 22 September 1986 by A. Zawadowski)

We have measured Young's modulus Y of the charge density wave (CDW) conductor $K_0.3MoO_3$, both parallel ($Y_{||}$) and perpendicular (Y_{\perp}) to the highly conducting (b) axis. The elastic constants are anisotropic, and both $Y_{||}$ and Y_{\perp} show sharp anomalies at the Peierls transition temperature at $T=180K$. The anomaly in Y_{\perp} is dramatic and similar to that observed in TaS_3. No change in $Y_{||}$ or in internal friction is observed upon CDW depinning. We compare the detailed form of Y_{\perp} near the transition temperature to predictions of a recent theoretical model which considers coupling between electrons and the soft phonon.

INTRODUCTION

Of the few low dimensional materials which have been observed to display sliding charge density wave (CDW) transport, the blue bronzes $Ag.3MoO_3$ (AgK, Rb) form a particularly interesting class [1]. Unlike the transition metal tri-chalcogenides $NbSe_3$ and TaS_3, for example, $K_0.3MoO_3$ is, despite its quasi one dimensional electronic structure, a very cohesive three dimensional crystal. Below the Peierls transition temperature $T_P=180K$, $K_0.3MoO_3$ displays a host of unusual electronic properties, including nonlinear dc conductivity [2] and enormous low-frequency polarization effects [3,4]. These properties are attributed to excitations of the collective CDW mode.

Studies of layered Z-D and quasi 1-D linear chain CDW systems have demonstrated that CDW formation is often associated with anomalies in the elastic properties (namely Young's modulus Y and internal friction δ) of the host crystal [5-7]. More recent experiments have revealed a sensitivity of the elastic properties to the dynamic state of the CDW condensate, for example dc depinning, ac excitation, or electronic mode locking (induced by combined ac and dc electric fields) [8-10].

In this Communication, we report on measurements of the elastic properties (primarily Young's modulus) of $K_0.3MoO_3$. We have measured Y both parallel to the highly conducting (b) axis (denoted $Y_{||}$), and perpendicular to this axis, parallel to (102) (denoted Y_{\perp}). At room temperature the elastic constants are anisotropic, and we find well defined, non hysteretic anomalies in Y_{\perp} and $Y_{||}$ at $T_P=180K$. Somewhat surprisingly, no changes are observed in $Y_{||}$ or δ upon CDW depinning.

EXPERIMENTS AND RESULTS

Single crystals of $K_0.3MoO_3$ were grown by electrolytic reduction of a $K_2MoO_4-MoO_3$ melt. The crystals were cleaved into thin plates of typical dimension $1mm \times 0.3mm \times 0.05mm$, with the long dimension corresponding to the direction for which the elastic properties were measured. Our experimental technique was based on the Barmatz vibrating reed method [5], where the (preferably long and thin) sample is clamped at one end and mechanically driven to resonance by a capacitively coupled ac electric field. In our experiments resonance was detected by a 600 MHz rf carrier and a phase locked loop circuit was employed to continuously monitor the resonance frequency f_0 and resonance amplitude A_0. Our system was originally designed to study elastic properties of $NbSe_3$ and TaS_3 crystals with typical resonance frequencies in the kHz frequency range. In order to excite a similar low frequency resonance in $K_0.3MoO_3$, a concentrated mass M (small globule of silver paint) was added to the free end of the cantilevered crystal, effectively rescaling the resonance frequency to a lower, detectable level. The sample was clamped by first evaporating indium pads to the ends, followed by silver paint mounting. On occasion, a very fine (weakly perturbing) gold wire was attached to the free end of the crystal (in addition to the mass M) to facilitate simultaneous dc and nonlinear conductivity measurements.

In the configuration of clamped sample with mass M attached, the Young's modulus Y is given by [11]

$$Y = \frac{4L^2M}{(2\pi f_0)^2}$$

where L is the distance from the clamped sample end to the center of the mass M, t is the sample thickness in the direction of flexure, and s is the sample width.

At room temperature, Young's modulus for $K_0.3MoO_3$ was determined to be $Y_{||}=1\times10^{12}$ dyne cm$^{-2}$ and $Y_{\perp}=1\times10^{12}$ dyne cm$^{-2}$. The variations reflect differences between samples, due primarily to difficulties in determining effective sample geometry (at the clamp, for example). On the average, $Y_{||}/Y_{\perp}\approx 2$ at room temperature.
Young’s modulus Y measured both parallel and perpendicular to the b axis in $K_{0.3}MoO_3$. The data have been normalized to room temperature values. The vertical arrow identifies the Peierls transition temperature.

Figure 1 shows $Y_{||}$ and Y_{\perp} for $K_{0.3}MoO_3$ as functions of temperature. The two curves have been arbitrarily displaced vertically. For both $Y_{||}$ and Y_{\perp}, well defined anomalies are apparent at $T=180K$, corresponding to the Peierls transition temperature as determined by resistivity measurements on the same crystal. Measurements on several other $K_{0.3}MoO_3$ crystals yielded identical results; one crystal from a high impurity concentration growth batch, with a transition temperature of 174K, showed similar modulus anomalies at $T=174K$. Subtracting in Fig. 1 the strictly thermal changes in Y, we find, due to the transition, relative changes in elasticity of $\Delta Y_{||}/Y_{||}=1.6x10^{-3}$ and $\Delta Y_{\perp}/Y_{\perp}=1.7x10^{-2}$. Hence the anomaly in Y_{\perp} is nearly an order of magnitude stronger than that associated with $Y_{||}$. The strong anomaly in Y_{\perp} is very similar to that previously observed in the CDW material TaS_3 [7, 8]. The weaker anomaly in $Y_{||}$ is nearly identical in form (though larger in magnitude) to $Y_{||}$ found in (TaSe$_4$)$_2I$ at T_p [12]. Between room temperature and 77K, only one anomaly was found in $Y_{||}$ and Y_{\perp}, and, in carefully cycling temperature through T_p several times, no significant hysteresis was observed in the elastic anomalies. The detailed behavior of $Y_{||}$ and Y_{\perp} near T_p is shown in Fig. 2.

In the related CDW conductors NbSe$_3$ (upper CDW state), TaS_3, and (TaSe$_4$)$_2I$, applied electric fields E exceeding the threshold field E_T for the onset of nonlinear conduction have dramatic effects on the elastic properties of the crystal: for $E>E_T$, Y smoothly decreases (and eventually saturates) and δ strongly increases and quickly saturates [7-10]. We have searched for similar electric field dependences of $Y_{||}$ and δ in $K_{0.3}MoO_3$. For two separate crystals, the CDW was depinned at several temperatures in the range 50-85K; Fig. 3 shows a typical graph of the differential resistance dV/dI and elastic constants as functions of dc bias. Despite strong nonlinear conductivity behavior with a well defined threshold, no associated anomalies are observed in the elastic constants $Y_{||}$ or δ. Careful measurements using signal averaging at 77K and 57K placed limits on the fractional change of the elastic constants of $5x10^{-5}$ for $Y_{||}$ and $2x10^{-3}$ for δ. Of interest would be the behavior of Y_{\perp} during CDW depinning; such an experiment was not performed.

DISCUSSION

The single non-hysteretic anomaly in Y observed at T_p in Fig. 1 is consistent with a single second order phase transition in $K_{0.3}MoO_3$. The width of the transition, most apparent from Fig. 2, is consistent with X-ray and neutron diffraction studies which show superlattice structure above T_p [1, 13]. There has been some speculation as to the existence of an incommensurate-commensurate (IC-C) phase transition near 100K [14]. In the layered CDW compound $2n-TaSe_2$, the IC-C transition is associated with a giant (hysteretic) elasticity anomaly, presumably due to the formation and movement of boundaries between IC and C domains [5]. We find no similar behavior in $K_{0.3}MoO_3$, suggesting the absence of an IC-C transition, consistent with structural neutron studies [13].
Elastic anomalies in the charge density wave conductor $K_{0.3}MoO_3$

Vol. 60, No. 10

Fig. 3 Differential electrical resistance dV/dI, Young's modulus $Y_{||}$ and internal friction δ in $K_{0.3}MoO_3$, as functions of dc bias current. CDW depinning has no effect on $Y_{||}$ or δ.

\[
\frac{\Delta Y}{Y} = 1 \times 10^{-4}
\]

\[
\Delta \delta/\delta = 0.1
\]

\[
Y = 10 \Omega
\]

\[
T = 77 K
\]

\[
\Delta Y/Y = 1 \times 10^{-4}
\]

\[
\Delta \delta/\delta = 0.1
\]

\[
dc \text{ bias current (} \mu A\text{)}
\]

\[
-200 \leq I \leq 200
\]

\[
\text{Fig. 3}
\]

Differential electrical resistance dV/dI, Young's modulus $Y_{||}$ and internal friction δ in $K_{0.3}MoO_3$, as functions of dc bias current. CDW depinning has no effect on $Y_{||}$ or δ.

\[
\Delta Y/Y = 1 \times 10^{-4}
\]

\[
\Delta \delta/\delta = 0.1
\]

\[
dc \text{ bias current (} \mu A\text{)}
\]

\[
-200 \leq I \leq 200
\]

\[
\text{Fig. 3}
\]

Differential electrical resistance dV/dI, Young's modulus $Y_{||}$ and internal friction δ in $K_{0.3}MoO_3$, as functions of dc bias current. CDW depinning has no effect on $Y_{||}$ or δ.

\[
\Delta Y/Y = 1 \times 10^{-4}
\]

\[
\Delta \delta/\delta = 0.1
\]

\[
dc \text{ bias current (} \mu A\text{)}
\]

\[
-200 \leq I \leq 200
\]

\[
\text{Fig. 3}
\]

Differential electrical resistance dV/dI, Young's modulus $Y_{||}$ and internal friction δ in $K_{0.3}MoO_3$, as functions of dc bias current. CDW depinning has no effect on $Y_{||}$ or δ.

\[
\Delta Y/Y = 1 \times 10^{-4}
\]

\[
\Delta \delta/\delta = 0.1
\]

\[
dc \text{ bias current (} \mu A\text{)}
\]

\[
-200 \leq I \leq 200
\]

\[
\text{Fig. 3}
\]

Differential electrical resistance dV/dI, Young's modulus $Y_{||}$ and internal friction δ in $K_{0.3}MoO_3$, as functions of dc bias current. CDW depinning has no effect on $Y_{||}$ or δ.

\[
\Delta Y/Y = 1 \times 10^{-4}
\]

\[
\Delta \delta/\delta = 0.1
\]

\[
dc \text{ bias current (} \mu A\text{)}
\]

\[
-200 \leq I \leq 200
\]

\[
\text{Fig. 3}
\]

Differential electrical resistance dV/dI, Young's modulus $Y_{||}$ and internal friction δ in $K_{0.3}MoO_3$, as functions of dc bias current. CDW depinning has no effect on $Y_{||}$ or δ.

\[
\Delta Y/Y = 1 \times 10^{-4}
\]

\[
\Delta \delta/\delta = 0.1
\]

\[
dc \text{ bias current (} \mu A\text{)}
\]

\[
-200 \leq I \leq 200
\]

\[
\text{Fig. 3}
\]

Differential electrical resistance dV/dI, Young's modulus $Y_{||}$ and internal friction δ in $K_{0.3}MoO_3$, as functions of dc bias current. CDW depinning has no effect on $Y_{||}$ or δ.

\[
\Delta Y/Y = 1 \times 10^{-4}
\]

\[
\Delta \delta/\delta = 0.1
\]

\[
dc \text{ bias current (} \mu A\text{)}
\]

\[
-200 \leq I \leq 200
\]
exponent; closer to T_p, however, the slope approaches 3/2. Thus, if there is a dimensionality crossover to the lower exponent 1/2, the crossover temperature must necessarily be very close to T_p. We also note that the anomaly in Y is somewhat larger above T_p than it is below T_p, in contradiction to the predicted behavior of Nakane's model where the scaling relation $f(\tau)$ above T_p transforms into $2f(2\tau)$ below T_p. Our data suggests a rough correspondence $\Delta Y / Y(T>T_p) \approx 4\Delta Y / Y(T<T_p)$, although we do not attach much importance to this relation.

In summary, we have observed anisotropic elasticity anomalies at the CDW transition of $K_0.3\text{MoO}_3$, with no evidence for an additional lock-in transition at 100K. The anomalies at T_p predict stress and expansivity coefficients that are experimentally accessible. For T close to T_p, Y approximately scales with a critical exponent 3/2.

We thank Prof. J. Brill for helpful discussions, and Prof. Y. Nakane for making available relevant manuscripts prior to publication. This research was supported by NSF grant DMR 84-00041. One of us (AZ) also received support from the Alfred P. Sloan Foundation and an IBM Faculty Development Award. LB acknowledges support from an NSF Fellowship.

REFERENCES

14. See, for example, R. M. Fleming et al. in reference [13].