Correlation of Electron Tunneling and Plasmon Propagation in a Luttinger Liquid

Sihan Zhao, Sheng Wang, Fanqi Wu, Wu Shi, Iqbal Bakti Utama, Tairu Lyu, Lili Jiang, Yudan Su, Siqi Wang, Kenji Watanabe, Takashi Taniguchi, Alex Zettl, Xiang Zhang, Chongwu Zhou, Feng Wang

1Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA.

2Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

3Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA.

4Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, USA.

5Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro- and Nano-Photonic Structure (MOE), Fudan University, Shanghai 200433, China.

6NSF Nanoscale Science and Engineering Center (NSEC), University of California at Berkeley, Berkeley, California 94720, USA.

7National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.

8Kavli Energy NanoSciences Institute at the University of California, Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

9Department of Physics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

10Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA.

†These authors contributed equally to this work.

*To whom correspondence should be addressed.

Email: fengwang76@berkeley.edu & chongwuz@usc.edu
List of Captions

SM1. AFM image showing a representative SWNT cross junction device.

SM2. Transport data on individual metallic and semiconducting SWNTs characterized by near-field optical nanoscopy.

SM3. A SWNT cross junction with a metallic SWNT crossing a semiconducting SWNT characterized by near-filed optical nanoscopy.

SM4. Power-law scaling with electrical bias in individual metallic SWNTs.

SM5. Correlation of electron tunneling and plasmon propagation in device #2.
SM1. AFM image showing a representative SWNT cross junction device. Metal contacts are Pd/Au (10 nm/90 nm). The scale bar is 300 nm.
SM2. Transport data on individual metallic and semiconducting SWNTs characterized by near-field optical nanoscopy. (a) Transport data of an individual metallic SWNT (tube A in Fig. 2(c) in the main text) with weak dependence on backgate voltage (on/off < 5). (b) Transport data of an individual semiconducting SWNT (tube B in Fig. 2(c) in the main text) with strong dependence on backgate voltage (on/off > 1000). Measurements in (a) and (b) are carried out at room temperature in vacuum.

SM2.
SM3. A SWNT cross junction with a metallic SWNT crossing a semiconducting SWNT characterized by near-field optical nanoscopy. (a) Near-field optical nanoscopy image of a SWNT cross junction comprised of a metallic SWNT (tube A with pronounced Luttinger liquid plasmons) and a semiconducting SWNT (tube B with no plasmon oscillations). (b) The corresponding AFM topography image of the same SWNT cross junction. Note that tube A forms a bundle with another tube on the right-hand side of this image. The scale bars in (a) and (b) are 200 nm. SM3.
SM4. Power-law scaling with electrical bias in individual metallic SWNTs. (a) dI/dV results for the constituent metallic SWNT (tube 1-3 in Fig. 3(a)) at 15 K with the same backgate voltage as that used in Fig. 3(b). The power index from our best fitting is $\alpha \sim 0.11$, which corresponds to $g \sim 0.70$ by using Eq. (2) in the main text. (b) dI/dV results for another isolated metallic SWNT measured at 20 K. The power index from our best fitting is $\alpha \sim 0.23$, which corresponds to $g \sim 0.52$ by using Eq. (2) in the main text. The power scaling indexes vary significantly in different single SWNTs.
SM5. Correlation of electron tunneling and plasmon propagation in a Luttinger liquid in device #2. (a) Near-field optical nanoscopy characterization on a metallic SWNT cross junction. Luttinger parameters are determined to be \(g \approx 0.27 \) (tube 1-3) and \(g \approx 0.29 \) (tube 2-4) for each of two nanotubes from the measured Luttinger liquid plamons. Metal contacts are denoted by numbers. (b) Differential conductance \((dI_x/dV_x) \) measurement of the electron tunneling probability across the Luttinger liquid junction as a function of voltage drop across the junction \((V_x) \) at 20 K. Measurements are carried out in a four probe configuration where the electrical current is forced to flow through contacts 3 and 4 and voltage drop is measured through contacts 1 and 2. A power function fitting (blue line) yields \(g \approx 0.26 \). (c) The corresponding temperature-dependent electron tunneling data (zero \(V_x \)), which yields \(g \approx 0.30 \). (d) Scaled conductance \((dI_x/dV_x)/T^\alpha \) as a function of \(eV / k_B T \) at different temperatures, where \(\alpha \) is the power component with bias scaling at each temperature. All data collapse onto a single curve reasonably well, which provides an independent verification of Luttinger liquid behavior.